Russia’s Emerging ESCO Market: Prospects and Barriers for Energy Efficiency Investments

Maria Garbuzova and Reinhard Madlener

July 2012
Russia’s Emerging ESCO Market: Prospects and Barriers for Energy Efficiency Investments

July 2012

Authors’ addresses:

Maria Garbuzova, Reinhard Madlener
Institute for Future Energy Consumer Needs and Behavior (FCN)
School of Business and Economics / E.ON Energy Research Center
RWTH Aachen University
Mathieustrasse 10
52074 Aachen, Germany
E-Mail: mgarbuzova@eonerc.rwth-aachen.de, RMadlener@eonerc.rwth-aachen.de

Publisher: Prof. Dr. Reinhard Madlener
Chair of Energy Economics and Management
Director, Institute for Future Energy Consumer Needs and Behavior (FCN)
E.ON Energy Research Center (E.ON ERC)
RWTH Aachen University
Mathieustrasse 10, 52074 Aachen, Germany
Phone: +49 (0) 241-80 49820
Fax: +49 (0) 241-80 49829
Web: www.eonerc.rwth-aachen.de/fcn
E-mail: post_fcn@eonerc.rwth-aachen.de
Russia’s Emerging ESCO Market: Prospects and Barriers for Energy Efficiency Investments

Maria Garbuzova and Reinhard Madlener*

Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics / E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 10, 52074 Aachen, Germany

July 2012

Abstract: The Russian Energy Service Company (ESCO) market emerges rapidly due to the new energy efficiency legislation that has been implemented since 2009. However, a clear identification of the Russian ESCOs, comparable to those operating in the Western markets, remains rather difficult. Hence, aside from the independent ESCOs identified, further energy service-providing companies were within the scope of this survey. This paper delivers, to the best of our knowledge, the first systematic empirical investigation of the Russian ESCO industry, taking into account experiences from the international ESCO markets. Building on the insights gained from reviewing the existing international and Russian academic and non-academic literature on the ESCO concept, an explorative, questionnaire-based survey among 161 Russian energy companies and organizations was conducted. Twenty eight usable responses were returned, corresponding to a response rate of 17%. Our findings show that the new energy efficiency legislation addresses and supports the state sector. There are almost no state measures supporting the commercial ESCO sector. Most of the projects are financed either through ESCOs’ own funds and direct loans to customers, or by the customers themselves. In contrast, Russian banks rarely provide direct loan financing for energy efficiency projects of ESCOs, but rather offer financial leasing contracts. The contractual form “guaranteed savings”, which is generally more applicable in mature ESCO markets, is gaining in importance, while “shared savings” is barely used.

Keywords: Energy Efficiency, Financing, Energy Service Company, ESCO, Energy Performance Contracting, EPC, Energy Service Providing Company, ESPC

* Corresponding author. Tel. +49 241 80 49721 Fax: +49 241 80 49829; e-mail addresses: MGarbuzova@eonerc.rwth-aachen.de (M. Garbuzova), RMadlener@eonerc.rwth-aachen.de (R. Madlener).
1 Introduction

Russia is the fourth-largest energy consumer and the fifth-largest CO₂ emitter in the world (EIA, 2012). Its technical potential for energy savings was 45% of the country’s total primary energy consumption in 2005 (World Bank, 2005). Given that the Russian economy strongly depends on energy production and energy exports, there is a need to address these issues systematically. Meanwhile, energy efficiency and energy saving issues have received a high priority by the Russian government (RG). A policy and regulatory framework to support energy efficiency and energy savings has rapidly taken effect since 2009 and, hence, the development of a new energy service market in Russia has been boosted. In this context, Energy Service Companies (ESCOs) can take a significant role to promote energy efficiency and savings, as well as to address the environmental issues of the country. In Russia, an ESCO industry is rather a new subject matter, and only about 30 ESCOs have been in operation there by the end of the year 2011. During the last few years, there were some attempts to promote ESCO pilot projects, mostly initiated by foreign organizations and financial institutions. However, to date there is no information available about results of the energy performance-based projects and no comprehensive research and review on the Russian ESCOs market has been done before.

In order to identify the current stage of the ESCO industry development¹ in Russia, some primary questions need to be raised, such as whether the Russian ESCOs are representing a discrete business model by building up a separate industry, and if yes, how Russian ESCOs differ from companies that provide merely energy services, such as Energy Service Providing Companies (ESPCs)². In this context, Energy Performance Contracting (EPC) is considered as a core characteristic of the ESCO business model by distinguishing it from an ESPC. Based on the information gained from the review on the international academic literature on ESCO business models, as well as the Russian ESCO market conditions, this paper aims at exploring the Russian ESCO industry empirically by means of a questionnaire based survey and considering Russian expert opinions. In order to provide focused answers to the above mentioned research questions specifically for the Russian ESCO market, five research hypotheses have been formulated for this study:

¹ In this study, for simplicity and “visualization” reasons, the U.S. and other “successful” ESCO markets that apply the “Western-ESCO” business model are considered as a benchmark for the Russian ESCO market.
² ESPC can be, for instance, a consulting engineer specialized in efficiency improvements, an equipment manufacturer, an energy supplier, or a utility. An ESPC provides services for a fixed fee or as added value to the supply of equipment or energy. An ESPC is not paid on the basis of the guaranteed performance achieved through delivered services and, hence, does not bear any performance risk (WEEA, 1999).
Hypothesis 1: There are no differences in the types of contract agreements applied by ESCOs and ESPCs.

Hypothesis 2: There are no differences in the project financing options applied by ESCOs and ESPCs.

Hypothesis 3: The factors of the ESCOs’ competitive strategy do not differ from those of the ESPCs.

Hypothesis 4: There are no major differences in barriers that affect the development of ESCOs and ESPCs in the Russian energy service industry.

Hypothesis 5: There are no major differences in the factors that are decisive for the growth of ESCOs and ESPCs in the Russian energy service industry.

The remainder of this paper is organized as follows. Section 2 defines an ESCO business model and provides a short overview of the evolution of the ESCO industry in the U.S., as well as outlines the academic literature on the ESCOs all over the world. This analysis provides the possibility to derive some parallels to the Russian ESCO business model, if there are any, and some necessary adjustments for its successful operation under the given Russian market conditions and legislation. In section 3, the Russian market context with its current legislation base for energy service contracting is discussed in some detail. Section 4 describes the methods and procedures applied, as well as the population of this study that includes Russian companies providing energy efficiency services in a broader sense and those that can be classified as ESCOs. The detailed analysis and discussion of the results of the hypotheses testing, as well as further insights gained, are provided in section 5. Section 6 concludes.

2 Definition and history of the ESCO business model

The Russian ESCO industry is still in its early stage of development. Hence, up to now there is only very little academic and non-academic literature on ESCOs operating under Russian market conditions. In order to provide the best evidence we have of the context of an ESCO business model for further discussion in this paper, it is reasonable to investigate the prevalent features and history of the ESCO concept first, as well as to consider some of the experiences from other countries. Furthermore, parts of the questionnaire for the survey of the Russian ESCO market were derived from existing international survey studies on ESCOs worldwide.
2.1 Definition of the ESCO business model

In the international academic and non-academic literature there is no consensus yet regarding the exact definition of an ESCO business model. Nevertheless, most of the authors agree that an ESCO is a private or a public company that develops, installs, and provides integrated service-based projects with a typical duration of 5 to 10 years. The main aim of such ESCO projects is to enhance energy efficiency and savings and, consequently, to reduce greenhouse gas (GHG) emissions. An ESCO may provide further value-added services, such as energy auditing, energy management, comprehensive engineering, project design, and specifications and implementation, but also procurement and installation of equipment, facility and equipment operation and maintenance (O&M) for the contract period, monitoring and verification (M&V) of the savings results etc. (see e.g. Bertoldi et al., 2003; Bertoldi et al., 2006; Bertoldi and Rezessy, 2005; Dayton et al., 1998; Garbuzova and Madlener, 2011; Hopper et al., 2007; Painuly et al., 2003; Satchwell et al., 2010; Singer and Lockhart, 2002; Vine, 2005; Vine et al., 1999).

EPC is widely seen as a core characteristic of the ESCO business model (Bertoldi et al., 2003; Bertoldi and Rezessy, 2005). EPC typically encompasses the financing, planning, implementation and supervision of energy savings measures, where an ESCO provides energy and/or monetary savings guarantees through two main types of contracts (Fig. 1; see also Bertoldi et al., 2006; Lamers et al., 2008):

- **Guaranteed Savings** – An ESCO guarantees a certain level of energy savings and, hence, assumes the energy savings risk (performance risk). A client provides financing and takes on the credit risk. In case of higher savings than the guaranteed level, the surplus is to be divided between an ESCO and a client in an agreed manner. Due to the high level of trust needed for this type of contract (trust relation ESCO – client, client – lender), it is more applicable in a mature market;

- **Shared Savings** – An ESCO finances the project by covering the project-relevant costs and, hence, assumes the performance (energy saving guarantee) and the credit risk. The generated energy cost savings have to be split between an ESCO and a client in an agreed way. This type of EPC requires financially strong ESCOs.

3 In the Directive 2006/32/EC29 of the European Parliament and of the Council of April 5, 2006, for instance, an ESCO is defined as “a natural or legal person that delivers energy services and/or other energy efficiency improvement measures in a user’s facility or premises, and accepts some degree of financial risk in so doing. The payment for the services delivered is based (either wholly or in part) on the achievement of energy efficiency improvements and on the meeting of the other agreed performance criteria” (CEC, 2006, p.68) (additionally, see the “Commission staff working paper (annexes to the impact assessment) accompanying Draft Directive of the European Parliament and of the Council on energy efficiency and amending and subsequently repealing Directives 2004/8/EC and 2006/32/EC” of June 22, 2011 (CEC, 2011).
Generally speaking, EPC distinguishes between ESCOs and other ESPCs. In this study, therefore, the ESCO business model based on EPC is considered as a “Western-ESCO”, i.e. something like an “ideal” type of business model used in the mature ESCO industry. Indeed, in accordance with Goldman et al. (2005), we assume that the “definition of ESCO market activity must reflect industry evolution and changes in ESCO products and services” (Goldman et al., 2005, p.389). On account of this, in section 2.2 we present a review of the international academic and non-academic literature on the development of ESCO business models for application in the U.S and some other countries.

2.2 Development of the ESCO business model worldwide

Historically, the first ESCO business models emerged in the U.S. in the late 1970s, after marked oil prices increases (NAESCO, 2011). Nowadays, the U.S. ESCO industry is “widely seen as a successful model for the private sector delivery of energy-efficiency technologies and services, primarily to large institutional customers” (Goldman et al., 2005, p.387). The successful development of the U.S. ESCO industry, among others in the institutional markets, occurred not only due to growing energy prices, but also due to measures that have been encouraging the self-sustaining ESCO industry, such as the government policy support and market development programs (e.g. Integrated Resource Planning (IRP) and utility Demand Side Management (DSM) programs); well-established contract laws; access to local, long-term funds at reasonable rates etc. (Lin et al., 2004; Ürge-Vorsatz et al., 2007). Singer and Lockhart (2002) divide the U.S. ESCO industry development in several development phases. A short overview of these phases, enriched with some additional information from further studies on the U.S. ESCO market, is presented in Appendix 1.
Since the late 1980s, the U.S. ESCO concept has been spreading to highly industrialized countries (e.g. Germany, Austria, UK, Japan), some of the largest developing countries (e.g. Brazil, India), and numerous countries in transition (e.g. the Czech Republic, Slovak Republic). The ESCO industry, however, has been developing from country to country, with varying degrees of success. Thus, the focus of the academic literature of the 1980s and 1990s by and large has been put on ESCO’s market development strategies as well as opportunities and barriers the ESCO industry is facing internationally.

Adnot et al. (2002) highlight the history of energy services in France and describe a French ESCO approach, which is markedly different to the one adopted in the U.S. or Germany. The main differences of a French ESCO are: services provided are unbundled and an ESCO is “…judged (and paid) on each of the unbundled components: the economic efficiency in purchasing energy, the technical efficiency in continuous audit and maintenance, the financial efficiency in planning works on time…” (Adnot et al., 2002, p.2). Painuly et al. (2003) consider an ESCO as an important financing mechanism for energy efficiency in developing countries. Furthermore, the authors discuss the market barriers that impede formation of an ESCO industry in the developing countries. Among these barriers are: a lack of government support and competition; scarcity of capital; a lack of a credit history for energy efficiency projects, and awareness of energy efficiency potential, skill and technical competence. Vine (2005) assesses the development of the ESCO industry internationally (i.e. outside of the U.S.)^5. Several generally accepted actions to foster the development of an ESCO industry are provided in this study: increase of information about the ESCO business model, energy efficiency projects in general and given financial options; quality insurance of services provided by ESCOs; development of funding sources; standardization of contracts and others. Bertoldi et al. (2006) provide a comprehensive review of the ESCO industry focusing on the European countries. The study was conducted by means of a questionnaire-based survey in 2003-2004 that was mainly addressing energy efficiency experts, national authorities, and ESCO professionals^6. Based on the insights gained from their survey, the authors conclude, in conformity with Vine (2005), that

^4 In the EU, a development of an ESCO industry is boosted, among other factors, by the ambitious climate and energy policy targets for 2020: decrease of GHG emissions by at least 20% compared to 1990 levels; increase of usage of renewable energy sources up to 20% of the total energy production; and a reduction of energy consumption by 20% of the projected 2020 levels through energy efficiency improvements (EU, 2010).

^5 Vine (2005) interviews numerous participants from 38 selected countries in order to identify the following: a number of ESCOs in each country; economic sectors where the identified ESCOs operate; the four most important barriers for the ESCO business development; and the value of ESCO projects accomplished in 2001. The estimated total value of ESCO projects in 38 countries surveyed in this study is approximately $560-620 million (2001), amounting to about one-fourth of the U.S. ESCO industry size in 2000 (about two billion dollars) (Goldman et al., 2005; Vine, 2005).

^6 The questionnaire was addressed to EU-25 (to that point in time) and, additionally, to Bulgaria and Romania.
the development of the ESCO industry in Europe is quite heterogeneous\(^7\). Furthermore, the majority of ESCOs in Europe are either funded by large companies or established as subsidies of companies, and mostly active in the public sector. In contrast to the U.S. ESCO industry, where the guaranteed savings concept is primarily used, in the European countries the shared savings concept became the most adopted contractual form (Fig. 1).

Meanwhile, the focus of the academic research on the ESCO business is increasingly shifting to the African and Asian countries, in which ESCO business models were introduced with reference to the U.S. ESCO model. Vine et al. (1999) discuss several ESCO market development strategies for the Japanese market by focusing on opportunities and barriers of joint ventures between the U.S. and Japanese ESCOs. Lee et al. (2003), by referring to the article of Painuly et al. (2003), produce a case study on experiences from the Korean ESCO industry, which shows the particularly successful evolution in comparison to other developing countries. This is attributed to the fact that the South Korean government became one of the biggest customers for ESCO services and has actively supported the ESCO programs (likewise the U.S. and Canada\(^8\)). However, in Korea, ESCOs formed as joint ventures have difficulties to overcome cultural barriers and the issue of high initial investment cost. In order to solve these issues in the Korean market and in further developing countries, the authors suggest utilities or energy efficiency equipment manufacturers to focus on the implementation of “simple and easy projects” (Lee et al., 2003, p.656) arranged by ESCOs.

Murakoshi and Nakagami (2009) examine the development of the ESCO industry in Asia and ESCO development programs to that point of time in elected countries (Japan, China, Thailand, India). Likewise, in Europe the Asian ESCO market development varies from country to country\(^9\). Da-Li (2009) considers ESCOs as an important instrument for energy efficiency improvements and carbon mitigation improvements in China. Still, several barriers, related to market, finance, technology, information, poor energy pricing policies etc., considerably affect the development of the Chinese ESCO industry. In this context, the author provides a series of

7 The authors rank the surveyed countries according to their degree of intensity of ESCO activities (e.g Germany, Austria, the UK, and to a lesser extent Spain and Hungary in the group of the leading countries; and Sweden, France, the Czech Republic as the middle range countries).

8 The ESCO industry is developing successfully in Canada. However, in contrast to the U.S., the financing of the projects is based on the strength of a project and not of the balance sheet of an ESCO or a customer (Painuly et al., 2003).

9 ESCO markets have formed to some degree in Japan, China, India and Thailand. In other countries, such as Malaysia and the Philippines, the government has introduced an ESCO concept, but markets have not yet been developed. Initial measures for promoting ESCO concepts are assumed to be responsible for such differences in the development of an ESCO industry. For instance, the successful development of the Japanese ESCO industry is owed to a strong governmental support, clear regulation for energy efficiency measures, and the establishment of the Japan Association of Energy Services Companies (JAECSO) etc. In China and other emerging markets, the pilot ESCOs were, in contrast, initiated and financed by international organizations (Murakoshi and Nakagami, 2009).
corresponding countermeasures in order to boost the development of the country’s ESCO industry. Among them are the dissemination of the Kyoto Protocol and its flexible mechanisms; rationalization of energy prices and reduction of subsidiaries; and strong governmental support by the promotion of EPC.

Van Rensburg et al. (2008) explore an ESCO business model from an application-oriented point of view specifically for the telecommunication industry in South Africa. The authors develop and implement a new ESCO procedure in performing ESCO analysis for the telecommunications facilities by using different kinds of software, such as data for gathering, simulation modeling, retrofit and saving intervention analysis, as well as financial analysis.

Based on the review of the worldwide ESCO business development provided, one may conclude that there are two main forms of boosting the formation of an ESCO industry in any country: joint venturing between international ESCOs and domestic ESCOs or ESPCs, and active measures and programs for energy efficiency and services of the domestic government. However, most ESCOs in their infant stage face two common barriers: lack of funding for the projects and lack of a strong legislation base.

3 Development of the ESCO industry in Russia

3.1 The Russian energy market context

Despite of the average decrease of Russia’s primary energy intensity by 3.9% and its CO₂ intensity by 4.3% annually between 1995 and 2009 (Enerdata, 2011)\(^\text{10}\), Russia remains the fourth-largest energy consumer\(^\text{11}\) and the fifth-largest CO₂ emitter in the world. According to the Government of Russia (2010), these changes in energy- and CO₂ intensity are not attributed to the improvements in the efficiency of energy use, but rather to the sharp economic downturn, caused by the transition from the centrally planned economy of the Soviet Union to a market economy during the 1990s, followed by the financial crises of 1998 and 2008-2009. According to the Federal State Statistics Service (Rosstat), the average level of the fixed assets’ depreciation in Russia has reached 47.1% in 2010.\(^\text{12}\)

\(^{10}\) Primary energy intensity is calculated as total primary energy consumption divided by gross domestic product (GDP) (expressed in purchasing power parity (PPP) terms). CO₂ intensity is calculated as CO₂ emissions per unit of GDP, also expressed in terms of PPP.

\(^{11}\) Such a high level of energy intensity in Russia can be explained, among other reasons, by a high energy-intensive industrial structure due to the predominance of the heavy industry and a high population density in areas with considerable heating requirements (IEA, 2011).

\(^{12}\) On average, the producing equipment of the industrial sector is with a probability of 26% between 11 and 15 years old and with a probability of 14% about 20 years old (Rosstat, 2010).
These numbers suggest a huge scope for energy efficiency improvements. According to some estimates, Russia could have saved 30% of its energy consumption in 2008 in each sector of the economy by using energy as efficiently as comparable OECD countries (Fig. 2). If the comparable OECD countries achieved their projected energy efficiency levels by 2035, Russia could still save about 18% of its projected primary energy consumption (about 150 Mtoe) in 2035 according to an IEA efficiency sectoral analysis of the Russian economy (IEA, 2011, p.262). The technical potential for energy savings in Russia, calculated by the World Bank (2008), was estimated at 45% of the country’s total primary energy consumption in 2005.

Fig.2: Primary energy savings potential in Russia, based on comparable OECD efficiencies in the New Policy Scenario, 2008 and 2035
Source: IEA (2011, p.263)

A modernization of the Russian economy, in order to realize the given technical potential for energy savings, requires substantial investments. To date, the level of energy efficiency investments in Russia is, however, low due to several factors: an uncertain rate of return, lack of reliable data on energy consumption patterns over time, lack of communication of the investment opportunities in energy efficiency, lack of energy efficiency expertise, and an emerging

13 It accounts for more than 200 Mtoe of the Russia’s primary energy demand in 2008 (approximate amount of the total primary energy used by the UK in 2008). The savings potential of gas is almost 180 billion cubic metres (bcm), of oil and oil products 600 thousand barrels of oil per day (kb/d), and of coal more than 50 Mtce. The saved primary energy resources would have an international market value of about $70 billion in 2011, which equals to 46% of Russian domestic spending on energy in 2008 (IEA, 2011).
14 The estimation of the energy efficiency potential of the Russian economy by the 2011 World Energy Outlook emerges from a detailed and disaggregated analysis of Russia’s energy consumption in 2008 relative to OECD benchmarks in all sectors and sub-sectors except those affected by climate (e.g. due to higher heating needs), for which Finland and Canada were used for comparison.
15 The technical potential of energy savings in Russia is estimated by comparing the energy efficiency of technologies used in the Russian economy with all the most energy-efficient technologies commercially available over the world for each particular sector (World Bank, 2009).
16 In this paper, we consider results calculated in the New Policies Scenario by the 2011 World Energy Outlook. The Scenario takes into account the existing Russian policies and policy intentions, and includes (where available) targets for the energy sector and environment that are set out in national strategy documents, even where the relevant measures or instruments for their implementation are not yet available (IEA, 2011).
legislative base for energy efficiency projects (IEA, 2011, pp. 257,259). In this context, an ESCO business model can partly address issues concerning the lack of investments, underdeveloped technology in use, and ineffective energy systems by bearing business risks.

3.2 Development of an ESCO business model in Russia

Since the RG as part of its governmental program (hereafter GP) set a target to reduce the energy intensity of the Russian economy by 40%\(^1\) by the year 2020 compared to 2007, stipulated in the Decree No. 889 “Concerning some measures for improving the energy and ecological efficiency of the Russian economy” (June 4, 2008), the issue of energy efficiency has gained considerably in importance. Furthermore, the “Energy Strategy of the Russian Federation up to the year 2030”, approved and adopted on November 13, 2009, defines energy efficiency as one of the key priority areas for the Russian energy policy and economy.

In order to support the achievement of the federal target of an at least 40% decrease in energy intensity of the Russian economy by 2020, the RG approved by the Decree No. 2446-p a new national program “On Energy Conservation and Improving Energy Efficiency up to 2020” on December 27, 2010 (Minenergo, 2010). The key targets of the program are a reduction in energy intensity of the Russian economy of at least 7.4% during the first program period (2011-2015) and, overall, by 13.5% during the whole program period (2011-2020). These targets are expected to be achieved through certain federal measures aiming at the modernization as well as a rational and environmentally compatible use of energy resources in the main sectors of the Russian economy\(^1\) and its social sphere (Minenergo, 2010)\(^1\). The remainder of the 40% target is expected to be achieved through some structural changes, such as the implementation of energy-efficiency equipment, development of energy efficiency industries, and a reduction of energy consumption due to higher energy tariffs.

\(^1\) According to the New Policies Scenario of the 2011 World Energy Outlook, the 40% reduction of energy intensity target of the RG is quite ambitious and could be achieved, however, only by 2028 due to the still quite ineffective regulatory framework, a lack of market-driven reforms and measures, and little structural change in the economy away from energy-intensive industries.

\(^1\) The GP introduces subprograms for improving energy savings and energy efficiency in electricity, heating, industry, agricultural, transport, housing sectors, in state service organizations and federal subjects of the Russian Federation (Minenergo, 2010).

\(^1\) These measures include enhancement and coordination of the federal, regional and municipal energy efficiency and energy saving programs; dispersion of information to increase public awareness; co-financing of the program from the governmental budget; promotion of efficient use of energy and heat resources; modernization of the energy infrastructure; and an increase of the renewable energy resources share in the total energy consumption balance of up to 4.5% by 2020 (Minenergo, 2010).
From the year 2010, all state-financed organizations are required to reduce their energy consumption by 3% of the 2009 level on an annual basis for a 5-year duration. According to Art. 16 of the Federal Law No. 261-FZ “On Saving Energy and Increasing Energy Efficiency, and on Amendments to Certain Legislative Acts of the Russian Federation” (hereafter “FL 261-FZ”), adopted in November 23, 2009, state and local governmental bodies; organizations with state or municipality interest; organizations with regulation functions; water, fuel and energy (producing and/or transporting) enterprises; industrial enterprises whose annual energy costs exceed 10 million RUB\(^{20}\); and organizations that implement energy savings- and energy efficiency measures that are partly or fully financed though the governmental or municipal budgets of the Russian Federation, are required to undergo the energy audit by the end of the year 2012 and, thereafter, at least once every five years. The remaining organizations may undergo the energy audit voluntarily (FL 261-FZ, Art. 15.5). Such an energy audit has to be carried out by a specialized Energy Audit Company (EAC)\(^{21}\) as an approved member of one of the (non-commercial) Self-Regulated Organizations (SROs)\(^{22}\) that unite EACs (FL 261-FZ, Art. 15.4) (Minenergo, 2011).

In the context of the high energy intensity of the Russian economy and ambitious energy efficiency targets set by the RG, an ESCO business model is becoming one of the key market elements. In line with the FL 261-FZ, the Federal State Unitary Enterprise “Federal Energy Service Company” (FESCO) was established in July 2011 under the supervision of the Ministry of Energy of the Russian Federation (in accordance with Decree No. 274). The main goals of FESCO are the development of the energy services market in Russia by expert and informational support through technical solutions for ESCOs; technical expertise and monitoring of energy efficiency project implementation; unification and type-design of engineering solutions; establishing centers of competence; activity-planning at regional and municipal levels; bringing energy service activities to international standards; integration of energy service agreements into the federal budget system; advancement of international cooperation; promotion of domestic production of energy efficiency- and energy saving technologies and technological development in the field of alternative energy sources etc. Most energy service contracts are planned to be accomplished under the supervision of FESCO in the public and industrial sectors (FESCO, 2012).

\(^{20}\) There are around 150 000 such organizations in Russia (IEA, 2011). 1 RUB = 0.0252 EUR, as of July 23, 2012.

\(^{21}\) The audit company provides a customer with an energy passport in accordance with the results of the energy audit (FL 261-FZ, Art. 15.6) (Minenergo, 2011).

\(^{22}\) Since August 2010, Minenergo has maintained a database of the SRO in line with the regulation, stipulated in FL 261-FZ (for more information see FL 261-FZ, Art. 18 and FL 315-FZ “On self-regulated organizations” (December 1, 2007).
Hence, the RG has taken a number of steps to foster the development of an ESCO industry. The recent main documents on the existing legislative and regulatory framework for energy service contracting (ESC) and ESCOs are summarized in Table 1.

Table 1: The Basic legislation related to ESC and ESCO operations in Russia.

<table>
<thead>
<tr>
<th>Law/Decree</th>
<th>Main issues concerning ESC</th>
</tr>
</thead>
</table>
| **FL 261-FZ “On Saving Energy and Increasing Energy Efficiency, and on Amendments to Certain Legislative Acts of the Russian Federation”**²³ (November 23, 2009) (followed by several additional decrees and special federal programs of action to make the law work) (Minenergo, 2011) | • **Aim:** Creation of legislative, economic and organizational incentives for energy savings and energy efficiency
• **Art. 19.1:** **Energy service contract (ESC)** - a new type of civil law contract, under which a contractor undertakes steps aiming at energy savings and increasing the efficiency of energy resource consumption of customers
• **Art. 19.2:** ESC has to include:
 1. **Quantity of energy savings** to be achieved by the contractor
 2. **Term of the contract** that is larger than the term necessary to achieve the volume of energy resource savings agreed to in the contract
 3. Further obligatory conditions existing in line with Russian contractual legislation
• **Art. 19.3:** ESC may include a clause:
 1. With regard to the customer’s obligation to deliver the energy resource usage pattern during the energy service contact period
 2. On obliged installation and putting into operation of energy resource meters by the contractor
 3. On setting a price of the contract that is based on the attained or planned targets of the implementation of an energy service contract etc.
• **Art. 20.1:** The fulfilled clauses of ESC (Art. 19) may be included in contracts of sale and purchase, supply or transmission of energy resources (apart from natural gas)
• **Art. 21.1-2:** ESCs may be concluded by state and municipal customers in congruence with the Public Budget Law and the Law on Placement of Orders
• **Art. 27.1.2:** The RG commits itself to support the promotion of regional energy efficiency programs and ESC |
| **FL 94-FZ of July 21, 2005 “On Placement of Orders to Supply Goods, Carry out Works and Render Services for Meeting State and Municipal Needs”** (amended in 2011) (FAS, 2011) | • **Aim:** Regulation of relations associated with the procurement of goods, works and services for state and municipal needs, and needs of budget-funded organizations
• **Amendment 2011:** new Chapter 7.1 “On procurement of energy services for the state and municipal needs” (hereafter “customer needs”)
• **Art. 56.1** “Procurement of energy services for the customers’ needs”:
 1. State and municipalities may conclude an ESC in order to implement energy-saving and energy-efficiency measures
 2. ESC is to be separated from (resources) supply contracts
 1. The initial (maximum) price of the ESC is based on the customer’s actual energy costs in the previous year (price setting order is defined in more detail in Art. 56.3-5)
 2. The payment for energy services by customers should be financed through state budgetary funding
 3. Procurement of energy services occurs through a tender, (open) auction in electronic format or a similar mechanism |
| **Decree No. 636 “On the Requirements for Energy Service Contract Terms and the Particularities of Determining the Starting (Maximum) Contract Price (Lot Price) for Energy Services”** (August 18, 2010) | • **Aim:** Introduction of requirements for an energy service contract concluded by state or municipality
• **Point 1:** Specification of energy-saving and efficiency measures formulated by the customer (e.g. based on the energy passport issued after energy audit)
• **Point 3:** A defined amount of energy savings to be provided by a contractor after the execution of an EPC
• **Point 6:** Instructions on setting a baseline for energy consumption patterns before energy-saving measures are implemented
• **Point 11:** Duration of EPC has to be defined |

Source: Own compilation

The current legislation on ESC was expected to intensify the formation of the ESCO industry in Russia in the past few years. However, the necessary terms of the ESC, such as the rights of the contracting partners and crediting procedures; public procurement; the term “measures aiming at energy savings and increasing the efficiency of energy resources” and quality standards for energy audits are not defined in the new legislation. Furthermore, no mechanisms for the cooperation between an ESCO and a bank and no guarantee mechanisms for ESCOs for invested funds have been provided so far. Also, the mechanism for the return on private investments from budget funds remains unclear. The latter, on which ESCOs may rely on, has to be carried out in accordance with FL 261-FZ, has likewise not been defined and regulated properly. Furthermore, the focus of the current legislation has been primarily put on setting norms for an ESC in the public sector (state/municipalities) by means of e.g. involving budgetary funds for energy saving- and energy efficiency measures, and less so on setting norms and incentives for the development of a commercial ESCO market.

Nevertheless, there were several attempts to implement ESCO pilot projects in Russia, mostly through international programs of the European Bank for Reconstruction and Development (EBRD) and The World Bank’s International Financial Corporation (IFC), even before the new legislation came into force. Efremov et al. (2005) provide a short overview of the considered or initiated projects related to ESCO operations in Russia. One of them represents the Collaboration Agreement on Energy Efficiency, which was signed between Norway and Russia in April 1999. The Norwegian Energy Efficiency Group (NEEG) was commissioned to prepare and implement various activities under the bilateral project “Energy Efficiency in Northwest Russia”. The authors discuss a setting-up procedure of an ESCO business in Russia, in accordance with the legislation base valid in 2004, and identify three types of the ESCO business model for the Russian market: (1) energy consultant; (2) energy consultant and supplier of energy-saving equipment (including equipment lease\(^\text{24}\)); and (3) an ESCO, established by an energy company that provides a full range of energy-saving services (e.g. energy auditing, financing, deployment of new equipment). The authors state that the guaranteed savings would be the most applicable agreement form in Russia due to the low financial history of the emerging ESCOs. Honkanen (2005) describes an attempt to promote a Finnish ESCO business also in Northwest Russia, in line with the EU project “FRESCO” (10/2003-12/2005) administered by the Finnish Lappeenranta University of Technology. The study considers the ESCO business model as a financial tool for energy savings through short/mid-term projects mainly in the energy

\(^{24}\) The authors emphasize that emerging ESCOs would primary offer leasing agreements for the delivery and installation of metering equipment due to the existence of well-framed Russian lease legislation.
production and distribution sectors, as well as through energy utilization from waste (Honkanen, 2005). Furthermore, the IFC, the private sector investment arm of the World Bank Group, proposed a pilot program “Financing Energy Efficiency in Russia”. This program builds upon IFC’s expertise and experience in Central Europe and cooperation with the Russian institutions and Russian energy efficiency project developers. The program aims at a better understanding of what energy projects can be considered as viable investments; examine industry-related loans and leases from energy efficiency perspectives; actively build a portfolio of energy efficiency projects; and develop specialized financial products, which target niche markets for energy efficiency finance in Russia (Osokina, 2004). However, there is no follow-up information provided on the realization progress of these pilot projects and energy efficiency programs.

Additionally, the given gaps in the current legislation on ESCOs and EPC lead to the assumption that most of the contracts are still closed between a contractor and a customer in line with the Civil Code for general provisions on contractual agreements (e.g. consultancy/services agreements, vendor and/or leasing contracts). Evidence suggests that the issue of the development of the Russian ESCO industry has been broadly broached in line with the energy efficiency politics and corresponding measures. However, it remains unclear how the Russian ESCO business model has been developing in comparison to the performance-based “Western-ESCO” model. In the following, we aim to shed some light on the Russian ESCO market by means of a questionnaire-based empirical analysis.

4. Empirical analysis and methods used

4.1 Research design

This paper also aims at exploring the emerging Russian ESCO market empirically. In order to obtain structured information for this purpose, a quantitative approach was chosen for conducting a questionnaire survey. The questionnaire method was applied for the following reasons:

- Main practices of the exploratory studies on the ESCO industries worldwide can be taken as prime guidelines for the development of the questionnaire for the Russian ESCO market;

- A questionnaire can employ a mixture of open-ended and closed-ended items and, hence, delivers more accurate conclusions and recommendations. The closed-ended questionnaire

25 In this context, the perceived credit risks and lack of familiarity with lending for energy efficiency projects is addressed by partial risk guarantees, which are applied to a portfolio of projects and not to individual transactions (Osokina, 2004).
items allow, through quantification, a systematic analysis by using certain statistical procedures. The open-ended questions reveal additional information that might have been missed by using only closed-ended questions (Johnson and Christensen, 2002);

- Due to sensitive data provided, confidentiality of the survey participants can be safeguarded through a special coding scheme to anticipate the identification of any specific individual or company;

- Due to the substantial effort required to survey 161 Russian companies targeted, which are located in different geographical parts of the country, the questionnaire method turned out to be less resource-intensive (time, funds etc.) than personal or telephone interviews.

Furthermore, some valuable practice-oriented insights into the Russian ESCO market development gained during a telephone interview of the authors with Mr. Wolfgang Skribot, Managing Director of the department “Energy & Infrastructure” of Gazprombank, on April 5, 2012, were applied in the survey data analysis.

4.2 Questionnaire development

Some parts of the questionnaire in its initial form (list of questions/constructs and corresponding items, measuring these constructs) were derived from international academic studies on the ESCO business model, its opportunities and barriers, and strategic management (especially Arny, 1996; Bertoldi and Rezessy, 2005; Dayton et al., 1998; Goldman et al., 2002; ICF, 2007; Lew, 2005; Lin et al., 2004; Okay and Akman, 2010; Painuly et al., 2003; Porter, 1998; Vine et al., 1998; Vine, 2005). For the purpose of this study, these items were adapted and extracted to the Russian energy efficiency market conditions. In addition, the formulated items were evaluated by an internal group of experts from the FCN institute. In order to ensure the technical appropriateness of the formulated items, the questions to technical aspects of ESCO activities were discussed with researchers from the corresponding areas of the FCN sister institute “Energy Efficient Buildings and Indoor Climate” (EBC). The final version of the questionnaire was adjusted according to the comments received with regard to data contents, structural equivalence/laid out, logical flow of the questions, placement of directions, and wording.

The logical flow of the questionnaire was advanced by grouping the questions in 11 thematic blocks, covering the following topics: (1) general characteristics of the surveyed companies; (2)

26 An appropriate placement of directions in a questionnaire can reduce the participants’ uncertainty about what they are supposed to do, and allow them to focus on providing the information needed for the survey (Babbié, 1973).
identification of the business type of the surveyed companies; (3) targeted market sectors; (4) services provided by the company (5) specialization areas; (6) types of contract agreements; (7) project financing; (8) characteristics of the projects; (9) competitive strategy; (10) barriers for energy services; and (11) growth factors for the energy service industry in Russia.

After the source questionnaire had been finalized in wording and design, it was translated from English into Russian as the share of the English-speaking population in Russia of just 4.8% is rather low (Nationmaster, 2011). The fact that the principal researcher of the research project (M.G.) is Russian in origin was beneficial not only for the translation process, but also for the adoption of the terms. In addition, the translated questionnaire was checked by a professional English-Russian translator.

Each questionnaire was accompanied by a motivation letter (also translated into Russian) with the short introduction of the survey-conducting institute and the purpose of the study. Besides, a summary of the study’s main conclusions was promised after finishing the analysis. The surveyed companies had a choice to send back the completed questionnaire either by using the enclosed stamped envelope (if a company had a wish to receive a questionnaire by ordinary mail), or via fax or e-mail. These measures as a whole were expected to facilitate the completion of the questionnaire and, in turn, improve the response rate and reduce measurement errors (e.g. a respondent is more likely to follow the flow of the survey, and less likely to misread or overlook questions (Bradburn et al., 2004; Dillman, 2000).

4.3 Measuring instruments

In line with the defined systematic question blocks, two types of questions were used: closed-ended ones with multiple choices, and open-ended ones. Some of the closed-ended questions have dichotomies (yes/no) and use nominal scale that has no natural rank order for all answers. Other closed-ended questions (question blocks 9 to 11) use the ordinal scale represented by a

27 Question block 2 has been inserted as a filter question in the study. It distinguishes several companies’ business models in accordance with provided definitions to each of them (e.g. “ESCO” was defined as a “company that provides energy-efficiency-related and other value-added services based on performance contracting as a core part of its business”).

28 The advantages of the multinational teams in cross-national studies are discussed by Bullinger (1995), Presser et al. (2004), and Harkness (2003) in detail. Furthermore, the translation of the questionnaire is considered by various authors as a central part of the scientific process of designing valid cross-national questions (Grunet and Muller, 1996; Pasick et al., 1996; Smith, 1998).

29 Dillman (2000) states that people’s motivation to respond to surveys is vested in the Social Exchange Theory: by responding to the survey, the respondents should be compensated in return in a way that meets some of their needs.

30 Some authors state that it is possible to treat the Likert scale as an interval scale to allow application of the parametric tests (Bowling, 1997, Ferguson and Cox, 1993, among others).
Likert scale. In this case, the answer categories show a natural and unambiguous rank order, as the participants were directed to make their item judgments in accordance with their stance to this particular item. The rating scale produces numerical data, where each point is labeled with a corresponding descriptor. In order to assess the importance of different items, suggested in line with the question block 9 on the competitive strategy of the companies, a 5-point Likert scale (ranging from 1 = fully irrelevant to 5 = very important) was provided. For the assessment of the effect of different barriers on the ESCO industry in Russia, block 10 also provides a 5-point Likert scale, where 1 is attributed with “no effect” and 5 with “major effect”. In question block 11, the importance of the listed factors for the growth of the energy service industry in Russia is assessed by a 3-point Likert scale: 1 = not important; 2 = important; 3 = very important. In accordance with Dillman (2000), only odd numbers of points were used in the Likert scale in order not to force participants to set one or two centermost numbers as a center or neutral point by an even number of ranking points.

The participants were given the opportunity to add each question with a further item, if it is not listed among the items provided. Besides, several open-ended questions provided specification of some issues described in the closed-ended questions.

Most of the terms used in the questionnaire were supplied with a clear definition in order to avoid misunderstandings or misinterpretation errors. The numerical item categories used in the survey do not overlap and, hence, are mutually exclusive (Johnson and Christensen, 2012).

4.4 Target population

The study sample of 161 companies is based in the Russian Federation and was primarily categorized as follows: 15% (or 24) are independent ESCOs, 9% (or 15) are ESCOs as a subsidiary or a department of large companies, 5% (or 8) are energy efficiency consulting or outsourcing companies, 11% (or 17) are regional energy efficiency centers, and 60% (or 97) are SROs. The attempt of this study was to cover all the operating ESCOs in any form to date, which explains the large diversity of the target population. Furthermore, it was difficult to cluster Russian ESCOs into one category, because there is no clear-cut definition of an ESCO business model for the Russian market. The lack of a database of companies that operate in the energy service industry, as well as almost no official (and very little unofficial, speculation-based) information on the ESCO industry in Russia, forced us to include all identified companies in this

31 SROs were included in the database after the pretest phase.
survey, which referenced their business activities to energy efficiency- and energy-saving projects (see footnote 27 on the issue of filtering questions).

4.5 Approach

The target companies were identified by screening the companies’ web pages, available companies’ reports, several energy efficiency conference participants’ lists, governmental web pages and programs, news articles, and descriptions of the energy efficiency- and energy-saving projects mostly through Internet search engines in Russian and English.

In order to find out whether the final version of the translated questionnaire works properly before using it in the research study, it was pretested\(^\text{32}\) in September, 2011. We contacted by phone five companies, each of which represented\(^\text{33}\) a specific type of the target companies, and was randomly chosen. Two filled out questionnaires were returned, and the pretest resulted in only minor modifications for some items and variables.

All target companies were contacted by phone\(^\text{34}\) (October, 2011) before the final version of the questionnaire was sent out to an identified contact person (October-November, 2011). Two weeks later, the reminders were e-mailed to all non-responding companies to once more encourage them to participate in the survey, followed by a reminder by phone. Overall, the survey procedure took about four months\(^\text{35}\) (September – December, 2011).

4.6 Statistical methods

The descriptive statistics\(^\text{36}\) for all items depending on their scale (nominal, ordinal, or metric) were carried out. The multiple response questions were defined as the Multiple Response Sets before the descriptive statistics were applied. For each item of every data type, frequencies were calculated and the corresponding diagrams generated. This procedure allows to inspect the data

\(^{32}\) Especially in the cross-national studies the role of pretesting of a translated questionnaire increases due to the need to examine whether items and scales meet acceptable standards of comprehension, reliability, and validity in the targeted country (Krebs and Schuessler, 1986; Presser et al., 2004). This helps to identify potential problems in intent, clarity, and navigation (Bradburn et al., 2004; Dillman, 2000).

\(^{33}\) Tull and Hawkins (1976) and Zaltman and Burger (1975) state that a pretest subject should be “typical” or “representative” for the target population of a survey.

\(^{34}\) The identification of a contact person among the companies, which could provide information needed for this survey, was one of the biggest hurdles in this survey. In some cases, during the first telephone calls, there was unwillingness of the addresses to participate in the survey or to forward it to a corresponding person either because of a fear of an “industrial espionage”, or of general company’s restrictions to participate in the survey.

\(^{35}\) The questionnaire preparation phase (4 months) is not included here.

\(^{36}\) All statistical analyses in this paper were performed using the Statistical Package for the Social Sciences (SPSS) 19.0 for Windows. All tables and graphs were generated and modified using Microsoft Excel.
for errors that might have occurred either during the transcription of the data or due to inconsistency in the respondent’s answer and, hence, to improve the plausibility of the data (Baur and Fromm, 2008).

The comparison of the discrete characteristics was assessed with Fischer’s Exact Test (Hypotheses 1 and 2). The continuous characteristics were compared between two groups (ESCOs and ESPCs) by means of the two-tailed Exact Wilcoxon Mann-Whitney Rank Sum Test (Hypotheses 3-5). All p-values are reported for two-tailed statistical tests, and an error level of 5% was used.

In order to estimate reliability of the ordinal multi-item scale for each construct (questions 9 to 11), Cronbach’s alpha was calculated. The scale on which the competitive strategy dimensions (question 9) and barriers for the energy service industry (question 10) were estimated revealed a Cronbach’s alpha of .923 and .793, respectively. Such high values of Cronbach’s alpha indicate a high level of internal consistency for these scales. For the scale that measures growth factors (question 11) for the Russian energy service industry, the Cronbach’s alpha is .605. This value is quite low; however, for the exploratory research it shows sufficient internal consistency (Garson, 2008).

5. Results and discussion

This section provides a detailed discussion of each of the hypotheses formulated and further insights gained by utilizing information from the questionnaire analysis of the 28 surveyed companies in Russia.

5.1 Sample profile

Out of the 161 target companies, there are 28 (17%) that have returned filled-out and usable questionnaires. During the first telephone call, 26 (16%) of the companies decided not to

37 For the calculation of the contingency tables and execution of the non-parametric tests, SPSS normally uses asymptotic methods to estimate p-values. This implies a sufficiently large sample size that conforms to a certain distribution. However, in the current study, the sample size is relatively small (N < 30), sparse and unbalanced. In this case, the asymptotic method is not expected to produce reliable results (Mehta and Patel, 1996). Thus, in order to solve this shortcoming, the calculations in this study are based on the exact distribution of the test statistics by calculating an exact p-value using Fischer’s Exact Test for the 2 x 2-contingency tables.

38 The Mann-Whitney Test determines whether a significant association exists between the mean responses of the two groups (ESCOs and ESPCs).

39 Reliability is the “extent to which a variable or set of variables is consistent in what it is intended to measure” (Hair et al., 1998, p.90). Cronbach’s alpha is widely used for reliability testing of the measurement set. It ranges from 0 to 1, the value of 1 indicating perfect reliability (e.g. 0.7 is considered to be at the lower level of acceptability of the reliability) (Hair et al., 1998).
participate in the survey and 16 (10%) could not be reached. 91 (57%) of the companies received reminders (e-mail and telephone call), but still chose not to participate in the survey. 13 (46%) of the respondents were directors of the companies; 5 (18%) were vice directors, managing/technical directors, or senior consultants/managers.

The head offices of 14 (50%) of the companies are located in Moscow; 3 (11%) in Yekaterinburg; and 2 (7%) in Samara. The head offices of the remaining 9 companies are predominantly located in the central part of Russia (Fig. 3).

Fig. 3: Response rate by head office location

The responding companies were founded between 1994 and 2011. Most of the companies, 11 (40%) were founded in 2010, 3 (10%) in 2008 and 2009, respectively (Fig. 4). This can be attributed to the fact that due to the new legislation on energy efficiency since 2009, the corresponding business segment has created an interest by numerous entrepreneurs in Russia (see section 2.2).

15 (54%) of the companies mentioned that they are active at the national level; 13 (47%) at the regional; 2 (8%) at the international, and 1 (4%) at the local level (multiple responses were allowed). Such a low international activity of the surveyed companies may, in contrast to some
Asian countries like Japan and China, indicate that there is no or very little cooperation in the form of joint ventures between the foreign and domestic companies on energy services.

Most of the companies \((n = 26) \), 18 (64\%), operate as both Business-to-Consumer (B2C) and Business-to-Business (B2B); 7 (25\%) as B2B businesses; and 1 (4\%) as B2C enterprises. The magnitude of the total number of employees involved in the energy efficiency business area of the surveyed companies ranges intensively between 6 and 50 employees (Fig. 5).

In line with question block 2, the surveyed companies were asked to choose one or several definitions of business models best describing their own company (Table 2). Based on the results achieved, companies were arranged in two groups: ESCOs and other energy services-providing companies (hereafter ESPCs). Four companies did not choose any of the given options, but provided in the option “others” two business models that distinguish their companies: two companies are EACs and two are consulting companies in energy services. These companies were arranged into the group “ESPCs”. All conducted statistical tests in this study were based on this 2-group classification of the companies.
Hypotheses testing

Hypothesis 1: There are no differences in the types of contract agreements applied by ESCOs and ESPCs.

In order to determine whether there are significant differences in the types of contract agreement applied by ESCOs and ESPCs, the two-tailed Fisher’s Exact Test was used (Table 3). As can be seen, only three types of contract agreement occur: first-out/fast pay-out \((p = .063)\), shared savings \((p = .608)\), and fixed price \((p = 1.000)\), indicate support for Hypothesis 1, as there are no statistically significant differences between ESCOs and ESPCs.

In contrast, the other 4 items, design-build \((p = .002)\), asset ownership \((p = .002)\), pay-from-savings \((p = .029)\), and guaranteed savings \((p = .030)\), differ significantly\(^{40}\) at the 5% significance level. This indicates no support for Hypothesis 1 and, hence, it can be rejected. For a contract agreement “fee-for-service”, the \(p\)-value could not be calculated by SPSS as the cells have an expected frequency of less than 5.

Indeed, especially in one of the contractual types of EPC, “shared savings” (core characteristics of a “Western-ESCO” business model that distinguishes it from other ESPCs), a significant difference was expected to be found. It appears that “shared savings” is also applied by companies that could not be identified as ESCOs in this study. In contrast, a significant difference could be identified in the contractual type “guaranteed savings”, thus, it is also applied by ESPCs. Apparently two types of contractual agreement – “fixed price” and “fee-for-service” – are mostly used in the projects by ESCPs and ESPCs.

\(^{40}\) No statement on a specific form of the differences between ESCOs and ESPCs can be clearly defined.

Table 2: Business model definition (multiple responses)

<table>
<thead>
<tr>
<th></th>
<th>(n = 24)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCO</td>
<td>9</td>
<td>25.7%</td>
</tr>
<tr>
<td>Architectural & engineering firm (A/E)</td>
<td>3</td>
<td>8.6%</td>
</tr>
<tr>
<td>Outsourcing energy management company</td>
<td>9</td>
<td>25.7%</td>
</tr>
<tr>
<td>Equipment supplier</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Equipment leasing company</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Service company</td>
<td>1</td>
<td>2.9%</td>
</tr>
<tr>
<td>Public sector energy agency</td>
<td>8</td>
<td>22.9%</td>
</tr>
<tr>
<td>Public-private Joint Venture</td>
<td>3</td>
<td>8.6%</td>
</tr>
</tbody>
</table>

Total: 35 (100.0%)
Table 3: Most applicable types of contract agreement

<table>
<thead>
<tr>
<th>Yes</th>
<th>Planned</th>
<th>Total n</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCPs</td>
<td>ESCOs</td>
<td>ESCPs</td>
<td>ESCOs</td>
</tr>
<tr>
<td>Design-Build</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Asset Ownership</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pay-from-Savings</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Guaranteed Savings</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>First-Out/Fast Pay-Out</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Shared Savings</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fixed Price</td>
<td>11</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Fee-for-Service</td>
<td>16</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Hypothesis 2: There are no differences in the project financing options applied by ESCOs and ESPCs.

The findings from testing Hypothesis 2 (two-tailed Fisher’s Exact Test) show no statistically significant difference between ESCOs and ESPCs in the following project financing options: financial lease \((p = .053) \), direct loan \((p = .120) \), cooperation between company and the local banks \((p = .254) \), and participation in the governmental funding programs \((p = 1.000) \) (Table 4)\(^{42}\). For these items Hypothesis 2 cannot be rejected. As for certain financing options, such as operating lease \((p = .005) \), internal financing arranged by the company \((p = .010) \), and participation in the international funding programs \((p = .047) \), ESCOs and ESPCs significantly differ Hypothesis 2 can be safely rejected. For the option “Internal financing arranged by the customer”, no \(p \)-value could be calculated.

A supposition that due to favorable legislation, the two options “operating lease” and “financial lease” are currently the most applicable ones for the financing of the projects in the area of energy efficiency and energy saving, was not much supported by the results provided in Table 4. Nevertheless, Skribot (2012) emphasized the importance of “financial lease” for energy efficiency projects in the Russian market. In contrast, nowadays, the option “internal financing arranged by the customer” seems to be widely adopted as a project-financing option. The majority of ESCOs finance or plan to finance the projects through their own funds. A certain coherence could then be identified for the option “direct loan” (used or planned) as a source for such project financing. The results, furthermore, do not show any affiliation of current or planned participation in any of the governmental or international funding programs. The companies that do participate in such programs have not specified this in an included text field for this purpose.

\(^{41}\) An answer option “no” is not shown in the table due to scarcity of space. The number of responses “no” provided by ESPCs and ESCOs can be calculated as the difference between “total n” and “yes”/“planned” respectively. This procedure is also applied to Table 4.

\(^{42}\) A further financial option, “membership fees“, was mentioned by three SROs in addition to the list provided in Table 4.
| Hypothesis 3: The factors of the ESCOs competitive strategy do not differ from those of the ESPCs. |

A two-tailed Exact Wilcoxon Mann-Whitney Rank Sum Test was used to compare Likert scale scores between ESCOs and ESPCs (Table 5). The test indicates that significant differences are found between ESCOs and ESPCs in six factors of the competitive strategy, for which Hypothesis 3 can be rejected: risk management by the “performance guarantee” concept (ESCOs mean = 4.63, ESPCs mean = 2.83, U = 3.0, Z = -3.606, p = .0, r = .806); vertical integration (ESCOs mean = 4.00, ESPCs mean = 2.79, U = 20.0, Z = -2.650, p = 0.008, r = .565); attractive project financial opportunities (ESCOs mean = 4.78, ESPCs mean = 3.60, U = 28.0, Z = -2.53, p = .011, r = .516); cost position (ESCOs mean = 4.00, ESPCs mean = 2.69, U = 21.0, Z = -2.361, p = .18, r = .515); adjustment to consumer needs (ESCOs mean = 4.67, ESPCs mean = 3.93, U = 33.0, Z = -2.315, p = 0.21, r = .473); distribution channel selection (ESCOs mean = 3.75, ESPCs mean = 2.38, U = 26.0, Z = -1.966, p = .49, r = .429). Furthermore, the mean scores indicate that these factors of the competitive strategy were graded by ESCOs as being more important.

No significant differences at the significance level of 5% between ESCOs and ESPCs are indicated for the remaining factors, such as product and service variety, product and service quality, price policy, technological leadership, operational excellence, specialization, relationship to the mother company, and relationship to the mother company (Table 5). This implies that Hypothesis 3 for these factors cannot be rejected at the 5% significance level.

These results show a noticeable inclination of ESCOs to the importance of performance contracting and of attractive financial options for their competitive strategy. In this context,
Skribot (2012) emphasized that especially in the case of an ESCO being established as a subsidiary of a bank, it becomes, self-evidently, easier to access the financial resources needed for the energy efficiency projects. Particularly in this case, the option “attractive project financial opportunities” becomes the most important feature of the competitive strategy of an ESCO in an emerging ESCO market.

Table 5: Strategic dimensions of the competitive strategy

<table>
<thead>
<tr>
<th></th>
<th>ESPCs Mean</th>
<th>n</th>
<th>ESCOs Mean</th>
<th>n</th>
<th>Total Mean</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk management by</td>
<td>2.83</td>
<td>12</td>
<td>4.63</td>
<td>8</td>
<td>3.55</td>
<td>3.0</td>
<td>81.0</td>
<td>-3.606</td>
<td>.806</td>
<td>.000</td>
</tr>
<tr>
<td>"Performance guarantee" concept</td>
<td></td>
</tr>
<tr>
<td>Vertical integration</td>
<td>2.79</td>
<td>14</td>
<td>4.00</td>
<td>8</td>
<td>3.23</td>
<td>20.0</td>
<td>125.0</td>
<td>-2.650</td>
<td>.565</td>
<td>.008</td>
</tr>
<tr>
<td>Attractive project</td>
<td>3.60</td>
<td>15</td>
<td>4.78</td>
<td>9</td>
<td>4.04</td>
<td>28.0</td>
<td>148.0</td>
<td>-2.530</td>
<td>.516</td>
<td>.011</td>
</tr>
<tr>
<td>financial opportunities</td>
<td></td>
</tr>
<tr>
<td>Cost position</td>
<td>2.69</td>
<td>13</td>
<td>4.00</td>
<td>8</td>
<td>3.19</td>
<td>21.0</td>
<td>112.0</td>
<td>-2.361</td>
<td>.515</td>
<td>.018</td>
</tr>
<tr>
<td>Adjustment to consumer</td>
<td>3.93</td>
<td>15</td>
<td>4.67</td>
<td>9</td>
<td>4.21</td>
<td>33.0</td>
<td>153.0</td>
<td>-2.315</td>
<td>.473</td>
<td>.021</td>
</tr>
<tr>
<td>needs</td>
<td></td>
</tr>
<tr>
<td>Distribution channel</td>
<td>2.38</td>
<td>13</td>
<td>3.75</td>
<td>8</td>
<td>2.90</td>
<td>26.0</td>
<td>117.0</td>
<td>-1.966</td>
<td>.429</td>
<td>.049</td>
</tr>
<tr>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>Product and service</td>
<td>3.31</td>
<td>13</td>
<td>4.00</td>
<td>9</td>
<td>3.59</td>
<td>36.5</td>
<td>127.5</td>
<td>-1.528</td>
<td>.326</td>
<td>.127</td>
</tr>
<tr>
<td>variety</td>
<td></td>
</tr>
<tr>
<td>Product and service</td>
<td>4.12</td>
<td>17</td>
<td>4.78</td>
<td>9</td>
<td>4.35</td>
<td>54.5</td>
<td>207.5</td>
<td>-1.371</td>
<td>.269</td>
<td>.170</td>
</tr>
<tr>
<td>quality</td>
<td></td>
</tr>
<tr>
<td>Price policy</td>
<td>4.00</td>
<td>17</td>
<td>4.44</td>
<td>9</td>
<td>4.15</td>
<td>54.0</td>
<td>207.0</td>
<td>-1.353</td>
<td>.265</td>
<td>.176</td>
</tr>
<tr>
<td>Technological leadership</td>
<td>3.60</td>
<td>15</td>
<td>4.22</td>
<td>9</td>
<td>3.83</td>
<td>51.5</td>
<td>171.5</td>
<td>-1.001</td>
<td>.204</td>
<td>.317</td>
</tr>
<tr>
<td>Operational excellence</td>
<td>3.71</td>
<td>14</td>
<td>4.11</td>
<td>9</td>
<td>3.87</td>
<td>50.5</td>
<td>155.5</td>
<td>-0.838</td>
<td>.175</td>
<td>.402</td>
</tr>
<tr>
<td>Specialization</td>
<td>4.59</td>
<td>17</td>
<td>4.33</td>
<td>9</td>
<td>4.50</td>
<td>65.5</td>
<td>110.5</td>
<td>-0.686</td>
<td>.135</td>
<td>.493</td>
</tr>
<tr>
<td>Relationship to the</td>
<td>2.50</td>
<td>10</td>
<td>2.83</td>
<td>6</td>
<td>2.63</td>
<td>27.5</td>
<td>82.5</td>
<td>-0.280</td>
<td>.070</td>
<td>.779</td>
</tr>
<tr>
<td>mother company</td>
<td></td>
</tr>
<tr>
<td>Relationship to the</td>
<td>4.31</td>
<td>16</td>
<td>4.43</td>
<td>7</td>
<td>4.35</td>
<td>52.5</td>
<td>188.5</td>
<td>-0.260</td>
<td>.054</td>
<td>.795</td>
</tr>
<tr>
<td>home government</td>
<td></td>
</tr>
</tbody>
</table>

Hypothesis 4: There are no differences in the barriers that affect the development of ESCOs and ESPCs in the Russian energy service industry.

By means of the two-tailed Exact Wilcoxon Mann-Whitney Rank Sum Test, a significant difference between ESCOs and ESPCs was found in one barrier, for which Hypothesis 4 can be rejected: the electricity bill non-payment problem (ESCOs mean = 4.00, ESPCs mean = 2.94, U = 33.0, Z = -2.253, p = .027, r = .442) (Table 6).

The mean scores provided in Table 6 indicate that the problem of electricity bill non-payment has more effect on ESCOs than on ESPCs. This problem roots in the Former Soviet Union (FSU), where energy supply was a guaranteed public service and the Russian energy companies were required to supply customers even though they had not paid their bills\(^{43}\) (IEA, 1995). In turn, this has led to a huge share of non-cash transactions and affected the ability of energy companies to invest in their modernization. It explains to some extent the

\(^{43}\) In 2000, the RG prohibited such non-cash transactions at all levels.
absence of an investment culture regarding the reduction of the high energy and carbon intensity of the Russian industry.

No significant differences between ESCOs and ESPCs could be detected for further barriers, which is why Hypothesis 4 cannot be rejected at the 5% significance level. In accordance to Skribot (2012), many ESCOs face the problem that the ESCO business model is either still unknown to most of the banks or many ESCO-newcomers are not in a position to provide a strong balance sheet from already realized energy efficiency projects as a sufficient proof of the reliability of such long-term investments under the Russian market conditions.

Table 6: Barriers for the energy service industry in Russia

<table>
<thead>
<tr>
<th>Barriers for the energy service industry in Russia</th>
<th>ESPCs Mean</th>
<th>n</th>
<th>ESCOs Mean</th>
<th>n</th>
<th>Total Mean</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity bill non-payment problem</td>
<td>2.94</td>
<td>18</td>
<td>4.00</td>
<td>8</td>
<td>3.27</td>
<td>33.0</td>
<td>204.0</td>
<td>-2.253</td>
<td>.442</td>
<td>.027</td>
</tr>
<tr>
<td>Lack of awareness/experience of local banks for financing EE projects</td>
<td>3.89</td>
<td>19</td>
<td>4.33</td>
<td>9</td>
<td>4.04</td>
<td>77.5</td>
<td>122.5</td>
<td>-1.249</td>
<td>.086</td>
<td>.225</td>
</tr>
<tr>
<td>Lack of managerial competence and interest</td>
<td>4.17</td>
<td>18</td>
<td>3.89</td>
<td>9</td>
<td>4.07</td>
<td>62.5</td>
<td>107.5</td>
<td>-1.108</td>
<td>.213</td>
<td>.300</td>
</tr>
<tr>
<td>Lack of competition</td>
<td>2.93</td>
<td>15</td>
<td>2.50</td>
<td>8</td>
<td>2.78</td>
<td>47.0</td>
<td>83.0</td>
<td>-0.931</td>
<td>.194</td>
<td>.393</td>
</tr>
<tr>
<td>Lack of government support</td>
<td>4.53</td>
<td>19</td>
<td>4.44</td>
<td>9</td>
<td>4.50</td>
<td>72.5</td>
<td>117.5</td>
<td>-0.737</td>
<td>.139</td>
<td>.416</td>
</tr>
<tr>
<td>Lending on strong balance sheet</td>
<td>3.59</td>
<td>17</td>
<td>3.89</td>
<td>9</td>
<td>3.69</td>
<td>61.5</td>
<td>214.5</td>
<td>-0.869</td>
<td>.170</td>
<td>.430</td>
</tr>
<tr>
<td>High credit risk of energy efficiency projects</td>
<td>4.63</td>
<td>19</td>
<td>4.33</td>
<td>9</td>
<td>4.54</td>
<td>72.0</td>
<td>117.0</td>
<td>-0.770</td>
<td>.146</td>
<td>.438</td>
</tr>
<tr>
<td>Low price of electricity</td>
<td>3.53</td>
<td>17</td>
<td>4.00</td>
<td>7</td>
<td>3.67</td>
<td>47.0</td>
<td>200.0</td>
<td>-0.826</td>
<td>.169</td>
<td>.477</td>
</tr>
<tr>
<td>Unfamiliarity with energy efficiency technologies</td>
<td>3.84</td>
<td>19</td>
<td>3.78</td>
<td>9</td>
<td>3.82</td>
<td>73.5</td>
<td>118.5</td>
<td>-0.659</td>
<td>.124</td>
<td>.546</td>
</tr>
<tr>
<td>ESCO concept unknown</td>
<td>4.06</td>
<td>18</td>
<td>3.88</td>
<td>8</td>
<td>4.00</td>
<td>64.0</td>
<td>100.0</td>
<td>-0.472</td>
<td>.093</td>
<td>.647</td>
</tr>
<tr>
<td>Environmental issues (e.g. CO₂) are not a priority</td>
<td>3.33</td>
<td>18</td>
<td>3.11</td>
<td>9</td>
<td>3.26</td>
<td>73.0</td>
<td>118.0</td>
<td>-0.423</td>
<td>.081</td>
<td>.694</td>
</tr>
<tr>
<td>Lack of time and focus to initiate/carry the project</td>
<td>3.56</td>
<td>18</td>
<td>3.44</td>
<td>9</td>
<td>3.52</td>
<td>74.0</td>
<td>119.0</td>
<td>-0.392</td>
<td>.076</td>
<td>.737</td>
</tr>
<tr>
<td>Lack of awareness of the EE potential</td>
<td>4.58</td>
<td>19</td>
<td>4.44</td>
<td>9</td>
<td>4.54</td>
<td>62.5</td>
<td>252.5</td>
<td>-0.456</td>
<td>.086</td>
<td>.742</td>
</tr>
<tr>
<td>Banks focus mostly on revenue stream not on energy saving stream</td>
<td>4.22</td>
<td>18</td>
<td>4.00</td>
<td>9</td>
<td>4.15</td>
<td>74.5</td>
<td>119.5</td>
<td>-0.362</td>
<td>.070</td>
<td>.766</td>
</tr>
<tr>
<td>Lack of skills and technical competence</td>
<td>4.00</td>
<td>18</td>
<td>3.78</td>
<td>9</td>
<td>3.93</td>
<td>75.5</td>
<td>120.5</td>
<td>-0.301</td>
<td>.058</td>
<td>.787</td>
</tr>
<tr>
<td>Low investing in non-core business project</td>
<td>3.81</td>
<td>16</td>
<td>3.89</td>
<td>9</td>
<td>3.84</td>
<td>67.5</td>
<td>203.5</td>
<td>-0.267</td>
<td>.053</td>
<td>.809</td>
</tr>
<tr>
<td>Weak legal and contract enforcement framework</td>
<td>4.63</td>
<td>19</td>
<td>4.78</td>
<td>9</td>
<td>4.68</td>
<td>80.0</td>
<td>270.0</td>
<td>-0.357</td>
<td>.068</td>
<td>.815</td>
</tr>
<tr>
<td>Lack of aggressive marketing of EE projects</td>
<td>3.94</td>
<td>18</td>
<td>4.00</td>
<td>8</td>
<td>3.96</td>
<td>68.5</td>
<td>239.5</td>
<td>-0.219</td>
<td>.043</td>
<td>.855</td>
</tr>
<tr>
<td>Bureaucracy</td>
<td>4.29</td>
<td>17</td>
<td>4.22</td>
<td>9</td>
<td>4.27</td>
<td>72.0</td>
<td>117.0</td>
<td>-0.264</td>
<td>.052</td>
<td>.894</td>
</tr>
<tr>
<td>Shorten of resource capacity to develop projects</td>
<td>3.84</td>
<td>19</td>
<td>4.11</td>
<td>9</td>
<td>3.93</td>
<td>83.5</td>
<td>273.5</td>
<td>-0.104</td>
<td>.000</td>
<td>.911</td>
</tr>
<tr>
<td>„Performance contracting“ unknown</td>
<td>4.17</td>
<td>18</td>
<td>4.25</td>
<td>8</td>
<td>4.19</td>
<td>71.0</td>
<td>107.0</td>
<td>-0.061</td>
<td>.012</td>
<td>1.000</td>
</tr>
<tr>
<td>High transactions costs for project financing on small projects</td>
<td>3.88</td>
<td>17</td>
<td>3.63</td>
<td>8</td>
<td>3.80</td>
<td>67.0</td>
<td>220.0</td>
<td>-0.063</td>
<td>.013</td>
<td>1.000</td>
</tr>
<tr>
<td>Lack of baseline annual energy consumption</td>
<td>3.79</td>
<td>19</td>
<td>3.89</td>
<td>9</td>
<td>3.82</td>
<td>85.5</td>
<td>130.5</td>
<td>-0.000</td>
<td>.020</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Hypothesis 5: There are no differences in the factors that are decisive for the growth of ESCOs and ESPCs in the Russian energy service industry.

By means of the two-tailed Exact Wilcoxon Mann-Whitney Rank Sum Test, a significant difference in only one factor “attractive investment opportunities in an infant industry” (ESCOs mean = 2.67, ESPCs mean = 2.16, \(U = 45.0, Z = -2.329, p = .030, r = .030 \)), could be found between ESCOs and ESPCs. For this factor Hypothesis 5 must be rejected. The mean score, thus, indicates that ESCOs consider this factor slightly more importantly for the growth of the energy service industry than ESPCs did.

No significant differences could be indicated between ESCOs and ESPCs in further factors of growth of the energy service industry in Russia (Table 7). Hence, Hypothesis 5 cannot be rejected for those factors.

Government support, qualification and skills, guaranteed return on investments in projects, as well as the legislation base for and standardization of EPC are obviously the most important factors for the growth of the energy service industry, measured by nine ESCOs.

Table 7: Growth factors for the energy service industry in Russia

<table>
<thead>
<tr>
<th>Factor</th>
<th>ESPCs Mean</th>
<th>ESPCs n</th>
<th>ESCOs Mean</th>
<th>ESCOs n</th>
<th>Total Mean</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attractive investment opportunities in an infant industry</td>
<td>2.16</td>
<td>19</td>
<td>2.67</td>
<td>9</td>
<td>2.32</td>
<td>45.0</td>
<td>235.0</td>
<td>-2.329</td>
<td>.440</td>
<td>.030</td>
</tr>
<tr>
<td>Awareness of banks of earnings possibilities from EE and carbon mitigation</td>
<td>2.11</td>
<td>19</td>
<td>2.56</td>
<td>9</td>
<td>2.25</td>
<td>57.0</td>
<td>247.0</td>
<td>-1.532</td>
<td>.290</td>
<td>.151</td>
</tr>
<tr>
<td>Partnerships with public sector</td>
<td>2.42</td>
<td>19</td>
<td>2.11</td>
<td>9</td>
<td>2.32</td>
<td>62.5</td>
<td>107.5</td>
<td>-1.276</td>
<td>.241</td>
<td>.289</td>
</tr>
<tr>
<td>Government support</td>
<td>2.63</td>
<td>19</td>
<td>2.89</td>
<td>9</td>
<td>2.71</td>
<td>67.5</td>
<td>257.5</td>
<td>-1.174</td>
<td>.222</td>
<td>.342</td>
</tr>
<tr>
<td>Favorable regulatory environment for domestic and foreign long-term investments</td>
<td>2.79</td>
<td>19</td>
<td>2.56</td>
<td>9</td>
<td>2.71</td>
<td>65.5</td>
<td>110.5</td>
<td>-1.257</td>
<td>.237</td>
<td>.371</td>
</tr>
<tr>
<td>Qualifications/Skills</td>
<td>2.58</td>
<td>19</td>
<td>2.78</td>
<td>9</td>
<td>2.64</td>
<td>68.5</td>
<td>258.5</td>
<td>-1.007</td>
<td>.190</td>
<td>.417</td>
</tr>
<tr>
<td>Stable business environment</td>
<td>2.53</td>
<td>19</td>
<td>2.33</td>
<td>9</td>
<td>2.46</td>
<td>69.0</td>
<td>114.0</td>
<td>-0.939</td>
<td>.177</td>
<td>.435</td>
</tr>
<tr>
<td>Rising energy prices</td>
<td>2.44</td>
<td>18</td>
<td>2.56</td>
<td>9</td>
<td>2.48</td>
<td>70.5</td>
<td>241.5</td>
<td>-0.612</td>
<td>.118</td>
<td>.599</td>
</tr>
<tr>
<td>Tax incentives</td>
<td>2.58</td>
<td>19</td>
<td>2.44</td>
<td>9</td>
<td>2.54</td>
<td>72.0</td>
<td>117.0</td>
<td>-0.765</td>
<td>.145</td>
<td>.623</td>
</tr>
<tr>
<td>Growing public awareness of energy scarcity and climate change</td>
<td>1.79</td>
<td>19</td>
<td>1.89</td>
<td>9</td>
<td>1.82</td>
<td>77.5</td>
<td>267.5</td>
<td>-0.437</td>
<td>.083</td>
<td>.663</td>
</tr>
<tr>
<td>Flexibility in meeting customers’ needs</td>
<td>2.32</td>
<td>19</td>
<td>2.44</td>
<td>9</td>
<td>2.36</td>
<td>76.5</td>
<td>266.5</td>
<td>-0.510</td>
<td>.096</td>
<td>.722</td>
</tr>
<tr>
<td>Reliable customers with strong balance sheet</td>
<td>2.58</td>
<td>19</td>
<td>2.56</td>
<td>9</td>
<td>2.57</td>
<td>81.0</td>
<td>126.0</td>
<td>-0.259</td>
<td>.049</td>
<td>.919</td>
</tr>
<tr>
<td>Demonstration projects</td>
<td>2.16</td>
<td>19</td>
<td>2.22</td>
<td>9</td>
<td>2.18</td>
<td>80.5</td>
<td>270.5</td>
<td>-0.284</td>
<td>.054</td>
<td>.920</td>
</tr>
<tr>
<td>Guaranteed ROI in whole project payback period</td>
<td>2.74</td>
<td>19</td>
<td>2.78</td>
<td>9</td>
<td>2.75</td>
<td>82.0</td>
<td>272.0</td>
<td>-0.229</td>
<td>.043</td>
<td>1.000</td>
</tr>
<tr>
<td>Legislation base for and standardization of EPC</td>
<td>2.58</td>
<td>19</td>
<td>2.67</td>
<td>9</td>
<td>2.61</td>
<td>84.0</td>
<td>274.0</td>
<td>-0.090</td>
<td>.017</td>
<td>1.000</td>
</tr>
</tbody>
</table>
5.3 Further results

The questionnaire addresses further aspects of the surveyed companies in order to provide the complete picture of the energy services market development in Russia. Based on the results from the analysis of the market sectors, targeted by projects of the companies, one may conclude that the surveyed companies operate in all main sectors of the economy. No significant difference was found between ESCOs and ESPCs in the targeted sectors (Table 8).

It should be noted that the surveyed companies are less active in the transport, recycling and agricultural sectors, which show high energy efficiency potentials. Such a result is contradictory to the fact that e.g. energy demand in the transport has been growing faster than in other sectors (3.4% per year in the period of 2000-2009), accounting for 21% of final energy consumption in 2010 (IEA, 2011).

In the five types of services provided by the surveyed companies, such as equipment installation, equipment supply, design-build projects, project research and development, getting technical requirements and development of the scope statements, significant differences were identified between ESPCs and ESCOs (Table 9). “Energy audits” are carried out by all ESCOs and the majority of ESPCs. In line with the new legislation (discussed in section 2.2), all “state-related” companies have to undergo an energy audit till the end of 2012. Thus, in recent years, many EACs were established. In this context, a question about the future of these EACs after the end of 2012 remains open. Including the ESCO-typical services, e.g. EPC, into the scope of the services provided by EACs, could help those companies to maintain their market positions in the longer term. The advantages of such structural change from EACs to ESCOs are that EACs in line with provided energy audits already know the majority of their potential clients, and hence, their energy consumption pattern.

<table>
<thead>
<tr>
<th>Table 8: Market sectors targeted by the projects of the company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
</tr>
<tr>
<td>Transport</td>
</tr>
<tr>
<td>Industrial</td>
</tr>
<tr>
<td>Recycling</td>
</tr>
<tr>
<td>Commercial</td>
</tr>
<tr>
<td>Public</td>
</tr>
<tr>
<td>Agricultural</td>
</tr>
<tr>
<td>Residential</td>
</tr>
</tbody>
</table>
“Energy consulting” and “getting technical requirements and development of scope statements” are also frequently mentioned services by ESCOs and ESPCs. Some of the respondents provided several additional services to those listed in Table 9, such as the development of the energy-savings programs for companies; modernization of the municipal infrastructure; and teaching activities in energy audit and energy-savings topics.

<table>
<thead>
<tr>
<th>Table 9: Services provided by the companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Equipment installation</td>
</tr>
<tr>
<td>Equipment supply</td>
</tr>
<tr>
<td>Design-build projects</td>
</tr>
<tr>
<td>Project research and development</td>
</tr>
<tr>
<td>Getting technical requirements and development of scope statements</td>
</tr>
<tr>
<td>Project feasibility study</td>
</tr>
<tr>
<td>Equipment maintenance and operations (M&V)</td>
</tr>
<tr>
<td>Project management</td>
</tr>
<tr>
<td>Energy Audit</td>
</tr>
<tr>
<td>Project finance</td>
</tr>
<tr>
<td>Guarantee of performance</td>
</tr>
<tr>
<td>Energy Consulting</td>
</tr>
<tr>
<td>Non-energy facility improvements</td>
</tr>
<tr>
<td>Solutions to environmental issues</td>
</tr>
<tr>
<td>Equipment manufacturing</td>
</tr>
</tbody>
</table>

Equipment used in the companies’ projects mostly comes from Russia \((n = 9) \) and has been imported from the following producing countries: Germany \((n = 10) \); China \((n = 4) \); U.S. \((n = 4) \); Great Britain \((n = 3) \); France, Sweden, Spain (each \(n = 2 \)), and others \((n = 4) \). The project specialization areas of the companies are presented in Table 10. In addition to this, at least seven companies mentioned “metering of energy consumption” as one of the most important core business directions nowadays that is based on the new legislation requirements since 2009.

<table>
<thead>
<tr>
<th>Table 10: Specialization project areas of the companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Combined heat and power</td>
</tr>
<tr>
<td>Lighting</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>Modernization</td>
</tr>
<tr>
<td>Gas based power</td>
</tr>
<tr>
<td>Heat/cold storage</td>
</tr>
<tr>
<td>Energy from waste</td>
</tr>
<tr>
<td>Fuel switching</td>
</tr>
<tr>
<td>Water management</td>
</tr>
<tr>
<td>Industrial processes modernization</td>
</tr>
<tr>
<td>Air conditioning</td>
</tr>
<tr>
<td>Heating</td>
</tr>
</tbody>
</table>
There were very few responses to the question block 8 on the characteristics of the realized and planned projects. Hence, almost no statistical tests could be conducted for these questions. Nevertheless, there are some results worth mentioning. Two options were considered as criteria to agree a contract with a client: an average amount of a client’s minimum energy bill of 172’500 € (6.7 million RUB) \((n = 3)\) and/or average maximum contract duration of \(2 \frac{1}{2}\) years \((n = 4)\). The projects of ESPCs \((n = 12)\) last on average between one and two years, and of ESCOs \((n = 8)\) between three and five years \((p = .022)\). The average project payback time of such projects is less than 4 years (ESPCs \textit{mean} = 6, ESCOs \textit{mean} = 5, \(p = .740\)) and the expected average project payback time for the future projects increases up to 6 years (ESPCs \textit{mean} = 8, ESCOs \textit{mean} = 5, \(p = .622\)). Further characteristics of the projects are summarized in Table 11. No significant differences in all options could be identified between ESPCs and ESCOs.

Table 11: Projects’ characteristics and forecasts

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESPCs</td>
<td>ESCOs</td>
<td>ESPCs</td>
<td>ESCOs</td>
</tr>
<tr>
<td>Estimated value of the conducted and planned projects (mean) (million €)</td>
<td>3.2</td>
<td>0.35</td>
<td>7</td>
<td>1.7</td>
</tr>
<tr>
<td>(n)</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Estimated achieved and expected energy savings through the projects</td>
<td>8%</td>
<td>32%</td>
<td>8%</td>
<td>33%</td>
</tr>
<tr>
<td>(n)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Estimated achieved and forecasted project growth in revenue</td>
<td>17%</td>
<td>15%</td>
<td>17%</td>
<td>18%</td>
</tr>
<tr>
<td>(n)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

However, a significant difference between ESPCs and ESCOs in the assessment of the annual growth rate of the Russian energy services market in the next five years were found: ESPCs assume an average growth rate of 6 to 10% and ESCOs of 11 to 20% per annum (ESPCs \textit{mean} = 14, ESCOs \textit{mean} = 8, \(p = .011\)). The market potential of energy efficiency projects over the next five years was assessed only by two respondents with a mean value of 125 GWh/year.

In accordance to Skribot (2012), it is quite difficult to estimate the Russian ESCO market development growth rate in the first 5 to 10 years. Skribot (2012) emphasizes that some parallels to the emerging Russian ESCO market could be derived from the development of the U.S. or Chinese ESCO industry, where it took a decade until the proper legal and business environment needed for the well-functioning ESCO market was established.
6. Conclusion

Our present explorative study reveals that there is an emerging ESCO market in Russia with an average estimated (by ESCOs and ESPCs) growth rate of 15-17% for the next three years. Likewise, in the U.S. ESCO industry, in the early 1990s (see Appendix 1), there were numerous market newcomers, such as ESPCs and several independent ESCOs. These Russian companies have been carrying out the project financing mostly in the form of the “fixed price” and “fee-for-services”. The study results show that the contractual form “guaranteed savings” is gaining in importance in the Russian ESCO market, while “shared savings”, presumably due to risk-sharing with a client, does not seem to be an attractive option for the emerging market. Most of the projects are financed either from ESCO’s own funds, direct loans, or by the customers. Even though the Russian banks offer financial leasing contracts for energy efficiency projects, financing through EPC seems to be rarely implemented.

The RG has been establishing a new regulatory framework and setting ambitious targets aiming at improving energy efficiency in all sectors of the economy. However, this legislation is far from being comprehensive for the well-functioning ESCO market, as there are substantial gaps in terms of rights of the contractual partners as well as funding and contractual procedures. Furthermore, as our study indicates, the new regulatory framework and political programs on energy efficiency issues tackle the “state-related” sector, and barely the commercial/private one, which may become the driving force of the Russian ESCO business. Incentives provided by funding programs or tax credits would help to attract commercial companies to enter the energy efficiency market.

Due to the requirement to conduct an energy audit until the end of 2012, numerous energy audit companies have been established over the last few years. Most likely, some of these companies will be converted into ESCOs in the aftermath of the mature legislation by adding performance-based contracting to their core business. In accordance to Skribot (2012), most of the energy audit companies would not be able to sustain their business unless they adapt their business model according to the requirements of the Russian legislation consistently. Apart from the comprehensive regulatory framework, there is a need to further increase the awareness of the banking sector of the energy efficiency projects and to introduce hedging instruments for risks and uncertainties of ESCO businesses. Like any other business, this could be partly achieved through the aggressive marketing of an ESCO business. Furthermore, as for instance, in China and Japan, the Russian ESCO market could extremely...
benefit from joint venturing with foreign partners – by securing know-how, financing, risk management, and technology transfer.

Even though our research provides some deep new insights into the Russian ESCO market development but it also reveals some of its limitations. First, some ESCOs may have been missed because the authors were not aware of all ESCOs operating in the Russian market. Second, obtaining reliable numbers is challenging in the Russian market and due to a lack of scientific literature on the Russian ESCO industry, there is no possibility to exposure, if the results of this study are plausible at the national level. This constrains the validity of our study and, hence, generalization of results should be made only with caution.

Future research should address the economic theories and applications of the ESCO business model under transition economies’ market conditions, which implies high economic and political uncertainty. A detailed analysis of the generation of White Certificates, implementation of Green Investment Schemes (GIS) and Joint Implementation (JI) projects, in line with an ESCO business model in the Russian market, would generate valuable new market opportunities and reveal future research needs. Finally, financial organizations and governmental programs that provide loans and funds for energy efficiency, as well as the ESCO projects implemented in the budget sector, should also be taken into consideration for the next Russian ESCO market survey.

Acknowledgements

We gratefully acknowledge the support of all Russian companies, which participated in our survey in 2011. We are also indebted to Wolfgang Skribot, Managing Director Energy & Infrastructure of Gazprombank in Moscow, for the valuable insights into the Russian ESCO market provided in the course of personal communication. Moreover, we are grateful for the helpful comments on an earlier version of the questionnaire provided by Carl Christian Michelsen, Research Associate at FCN, and Davide Cali, Research Associate at the Institute for Energy Efficient Buildings and Indoor Climate (EBC). Finally, financial research support from the E.ON ERC foundation (E.ON ERC gGmbH project grant no. 04-029) is gratefully acknowledged.
Abbreviations Used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2C</td>
<td>Business-to-Consumer</td>
</tr>
<tr>
<td>bcm</td>
<td>billion cubic meters</td>
</tr>
<tr>
<td>CEC</td>
<td>Commission of the European Communities</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CRS</td>
<td>Congressional Research Service</td>
</tr>
<tr>
<td>DSM</td>
<td>Demand-Side Management</td>
</tr>
<tr>
<td>EAC</td>
<td>Energy Audit Company</td>
</tr>
<tr>
<td>EBC</td>
<td>Energy Efficient Buildings and Indoor Climate (= E.ON ERC Institute)</td>
</tr>
<tr>
<td>EBRD</td>
<td>European Bank for Reconstruction and Development</td>
</tr>
<tr>
<td>EE</td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>EPC</td>
<td>Energy Performance Contracting</td>
</tr>
<tr>
<td>ESC</td>
<td>Energy service contracting</td>
</tr>
<tr>
<td>ESCO</td>
<td>Energy Service Company</td>
</tr>
<tr>
<td>ESPC</td>
<td>Energy Providing Service Company</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAS</td>
<td>Federal Antimonopoly Service</td>
</tr>
<tr>
<td>FCN</td>
<td>Institute for Future Energy Consumer Needs and Behavior (= E.ON ERC Institute)</td>
</tr>
<tr>
<td>FESCO</td>
<td>Federal Energy Service Company</td>
</tr>
<tr>
<td>FL</td>
<td>Federal Law</td>
</tr>
<tr>
<td>Fresco</td>
<td>project “The promotion of the Finnish energy business in North-West Russia”</td>
</tr>
<tr>
<td>FSU</td>
<td>Former Soviet Union</td>
</tr>
<tr>
<td>FZ</td>
<td>Federal Law (in Russian) - Федеральный (Ф) закон (З)</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>GIS</td>
<td>Green Investment Scheme</td>
</tr>
<tr>
<td>GP</td>
<td>Governmental program</td>
</tr>
</tbody>
</table>
References

Bullinger M (1995) German Translation and Psychometric Testing of the SF-36 Health Survey: Preliminary Results from the IQOLA Project, Social Science Medicine, 41 (10), 1359-1366.

Appendix

Appendix 1: The U.S. ESCO industry evolution phases

<table>
<thead>
<tr>
<th>Evolution phase</th>
<th>Main characteristics of the ESCO concept development in the U.S.</th>
</tr>
</thead>
</table>
| I. Beginning of large-scale energy efficiency (EE) (pre-1985) | • Demand-side management (DSM) programs and increase of energy prices intensified utilities to implement EE technologies (Painuly et al., 2003)
• **ESCO customers**: Utilities (utility program execution on the residential and institutional customers side) (Singer and Lockhart, 2002)
• **Business model**: ESPCs as pre-ESCOs - subcontractors to utilities that provide auditing, program management, but rarely comprehensive services (Singer and Lockhart, 2002)
• **Financial model**: Fee-for-services (Gilligan, 2011)
• **M&V model**: Providing services, not energy savings |
| II. Early ESCO experience (1985-1995) | • Industry size – $1 billion in 1995, average growth rate of 26% in 90s (Goldman et al., 2005)
• Authorization44 of Energy Savings Performance Contracts45
• **ESCO customers**: Industrial sector, and later public sector
• **Business model**: Service packages (comprehensive audit, design, implementation, maintenance, and financing) → first EPC (Singer and Lockhart, 2002)
• **Financial model**:
- Utilities pay ESCOs 80-100% of EE project costs (< building a new power plants)
- Shared savings, introduction of guaranteed savings
- Increased interest of banks and specialized financial companies
• **M&V model**: Emulation of utility metering, ESCO-proprietary spreadsheets, National Association of Energy Service Companies (NAESCO), US Department of Energy (DOE) |
| III. Consolidation and growth (1995-2000) | • Industry size - $2 billion in 200046, the average growth rate is 9% (Goldman et al., 2005)
• Consolidation of independent ESCOs by utilities and other companies
• **Business model**: formation of SuperESCOs47; EPC has been declining in its market share48
• **Financial model**: Guaranteed savings dominate49 |
| IV. Setbacks (2000-2004) | • Industry size – $2 billion in 2004, the average growth rate is 3%50 (Hopper et al., 2007)
• **Problems** (Hopper et al., 2007):
- Deregulation of the electricity market → stalled retail competition → utility-owned ESCOs or in-house ESCOs are negatively affected
- Enron collapse → debt classification in EPC (off-balance-sheet financing) is questioned |

44 Federal agencies were authorized to enter into Energy Service Performance Contracts with ESCOs (amendment to the National Energy Conservation Policy Act, 1992). ESCOs were paid with a defined share of any resulting energy cost savings from privately financed and installed energy conservation measures in federal buildings and facilities (Andrews, 2004).

45 In this research paper, no abbreviation for Energy Service Performance Contracts (ESPCs) is used in order to avoid confusion with the abbreviation of Energy Service Providing Companies (ESPCs).

46 Goldman et al. (2005) identify 63 regional and national companies that offer EPC, most of which are registered in NAESCO’s voluntary accreditation program’s database. In order to estimate ESCO market activity, the authors consider revenues from energy efficiency and other value-added services and exclude revenues from electric or gas commodity procurement. The estimated market size for EPC services was $0.9-1.2 billion in 2000.

47 A SuperESCO is a fully integrated ESCO that provides energy efficiency services and delivers fuels (e.g. gas, electricity) (Painuly et al., 2003; Vine et al., 1999).

48 According to Goldman et al. (2005), the U.S. ESCO business model has been undergoing structural changes, such as: declining market share of EPC projects (even though, the performance-contracting projects has been getting larger in their size) by switching to a design/build, fee-for-service bases, and offering additionally consulting or information services; enlarging scope of activities by entering “…restructured electricity and natural gas markets, combining commodity procurement with energy price risk management and energy-efficiency services as a single, bundled product” (Goldman et al., 2005, p.389); decreasing duration of projects.

49 Guaranteed savings are the dominant contractual form in the U.S. for the following reasons: generally, higher qualification of a third party financier than of an ESCO; a project debt is not denoted on the balance sheet of a customer, which, however, is intensified to resolve the on-going project issues as it bears the on-going debt service obligations.

50 Hopper et al. (2007) estimate the size of the U.S. ESCO industry by means of the “top-down” approach: identification of active ESCOs followed by evaluation of the corresponding project details.
V. Growth and new services
(2004-present)

- Industry consolidation (buyouts and mergers of ESCOs)
- Industry size - $5 billion in 2011\(^{51}\), average growth rate of 20% in 2004-2006 (Hopper et al., 2007)
- Expenditures on energy efficiency by utilities are kept growing
- Aggressive EE goals of the U.S. Congress in 2005
- **ESCO’s new customers**: public buildings (energy savings mandates, pay for capital improvements with energy savings; long payback horizons)
- **Business model**:
 - New services (e.g. distributed generation, renewable energy, build-own operate generation facilities, street lighting, water meters combining commodity procurement with energy price risk and energy efficiency management in a bundled product)
 - ESCOs are increasingly moving away from EPC (Goldman et al., 2005)
- **Technologies used by ESCOs (e.g.):**
 - EE technologies - 75% of ESCO industry revenues 2008 ($3.0 billion per year)
 - Onsite renewable generation - 14% of ESCO industry revenues in 2008 ($570 million)
- **Problems affecting ESCO industry:**
 - Finance industry instability and number of reforms in accounting treatment of leases
 - Continued education is required

\(^{51}\) Satchwell et al. (2010) estimate the U.S. ESCO industry revenues in 2008 at about $4.1 billion (lower than the projected revenues of $5.2-5.5 billion by Hopper et al., 2007). The projected annual growth rate of the U.S. ESCO industry revenues was 26% in 2009-2011 (Satchwell et al., 2010, p.6), and 7% in 2006-2008 (Satchwell et al., 2010, p.5).
List of FCN Working Papers

2012

2011

2010

2009

2008

FCN Working Papers are free of charge. They can mostly be downloaded in pdf format from the FCN / E.ON ERC Website (www.eonerc.rwth-aachen.de/fcn) and the SSRN Website (www.ssrn.com), respectively. Alternatively, they may also be ordered as hardcopies from Ms Sabine Schill (Phone: +49 (0) 241-80 49820, E-mail: post_fcn@eonerc.rwth-aachen.de), RWTH Aachen University, Institute for Future Energy Consumer Needs and Behavior (FCN), Chair of Energy Economics and Management (Prof. Dr. Reinhard Madlener), Mathieustrasse 10, 52074 Aachen, Germany.